- Abstract:

The aim of this assignment is to simulate a chopper circuit supplying a highly inductive and a purely resistive load with an IGBT as a switch. Using PSpice to show the turn-on and turn-off transitions for the voltage, current and power loss in the IGBT. And by calculations the conduction and the switching power losses will be obtained.

- Theory:

A chopper is basically a dc to dc converter whose main function/usage is to create adjustable dc voltage from fixed dc voltage sources through the use of semiconductors. In other words, a chopper is a high speed switch which connects and disconnects the load from source at a high rate to get variable or chopped voltage at the output.

The Insulated Gate Bipolar Transistor (IGBT), is a power semiconductor device basically used as a switch, IGBT combines between a Bipolar Junction Transistor (BJT), and a Field Effect Transistor (MOSFET), and it has a simple gate-drive characteristics as MOSFETs with a high-current and low-saturation-voltage capability as BJT. To sum up, an IGBT combines an isolated-gate FET for the control input and a bipolar power transistor as a switch in a single device.
-The average switching power loss in the switch with highly inductive load is:

$$
\mathrm{Ps}=0.5 * \mathrm{fs} * \mathrm{Vd} * \mathrm{Io}^{*}(\mathrm{tc}(\mathrm{on})+\mathrm{tc}(\mathrm{off}))
$$

-Total average switching power loss with resistive load is:
Ps= $1 / 6 * \mathrm{fs} * V \mathrm{~V}^{*}$ Io $*(\mathrm{tc}($ on $)+\operatorname{tc}($ off $))$
-The average power loss dissipation during conduction is:
Pon= Von*Io*ton*fs

- Calculations and Simulations:

First part (Highly Inductive Load):
A chopper circuit supplying a highly inductive load and having an IGBT as a switch, has the following parameters: $\mathrm{I}_{\mathrm{o}}=25 \mathrm{~A}, \mathrm{~V}_{\mathrm{d}}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{s}}=15 \mathrm{kHz}, \mathrm{L}_{\mathrm{s}}=700 \mathrm{nH}$ and $\mathrm{t}_{\mathrm{on}}=30 \mathrm{us}$. Assume linear voltage and current falls and rises during switching:
I. Calculate The conduction and the switching power losses if $\mathrm{t}_{\mathrm{c}(\mathrm{on})}=400 \mathrm{~ns}, \mathrm{t}_{\mathrm{c}(\mathrm{fff})}=600 \mathrm{~ns}$, assuming that $\mathrm{V}_{\text {on }}=2.5 \mathrm{~V}$ using the appropriate derived formulas.

$$
\begin{aligned}
& \mathrm{P}_{\text {switching }}=(1 / 2) * \mathrm{f}_{\mathrm{s}} * \mathrm{~V}_{\mathrm{d}} * \mathrm{I}_{\mathrm{o}} *\left(\mathrm{t}_{\mathrm{c}, \text { on }}+\mathrm{t}_{\mathrm{c}, \text { off }}\right) \\
& =(1 / 2) *(15 \mathrm{k}) *(400) *(25) *(1000 \mathrm{n}) \\
& =75 \text { Watt } \\
& \text { Pon,conduction }=\mathrm{f}_{\mathrm{s}} * \mathrm{~V}_{\text {on }} * \mathrm{I}_{\mathrm{o}} * \mathrm{t}_{\text {on }} \\
& =(15 \mathrm{k})^{*}(2.5)^{*}(25)^{*}\left(30 * 10^{-6}\right) \\
& =28.125 \text { Watt }
\end{aligned}
$$

III. The total average power losses in the IGBT:
$\mathrm{P}_{\text {Total }}=\mathrm{P}_{\text {switching }}+\mathrm{P}$ on,conduction $=103.125 \mathrm{Watt}$
II. In ORCAD/PSPICE, simulate a chopper circuit implementing an IGBT (BSM150GB50D) as a switch to supply a highly inductive load which has the following parameters: $\mathrm{Io}=25 \mathrm{~A}, \mathrm{Vd}=400 \mathrm{~V}, \mathrm{fs}=15 \mathrm{kHz}, \mathrm{Ls}=700 \mathrm{nH}$ and ton=30us. In the results, show the turn-on and turn-off transitions (magnified) for the voltage, current and power losses in the IGBT.

Second Part (Resistive Load):

If the chopper circuit is now supplying a purely resistive load of 15 Ohms (no parallel diode) and implementing the IGBT model. Assume linear voltage and current falls and rises during switching to:
a) Calculate the conduction and the switching power losses if $\mathrm{Vd}=400 \mathrm{~V}$, $\mathrm{fs}=15 \mathrm{kHz}$, ton=30us, tc(on) $=400 \mathrm{~ns}$, tc(off) $=600 \mathrm{~ns}, \mathrm{Ls}=700 \mathrm{nH}$ and Von $=2.5 \mathrm{~V}$ using the appropriate derived formulas.
$\mathrm{P}_{\text {switching }}=(1 / 6) * \mathrm{f}_{\mathrm{s}} * \mathrm{~V}_{\mathrm{d}} * \mathrm{I}_{\mathrm{o}} *\left(\mathrm{t}_{\mathrm{c}, \text { on }}+\mathrm{t}_{\mathrm{c}, \text { off }}\right)$
$=(1 / 6)^{*}(15 \mathrm{k}) *(400) *(25) *(1000 \mathrm{n})$
$=25 \mathrm{Watt}$
Pon,conduction $=\mathrm{f}_{\mathrm{s}} * \mathrm{~V}_{\text {on }} * \mathrm{I}_{\mathrm{o}} * \mathrm{t}_{\text {to }}$
$=(15 \mathrm{k}) *(2.5) *(25) *(30 \mathrm{n})$
$=28.125$ Watt
c) calculate the average power losses in the IGBT
$\mathrm{P}_{\text {Total }}=\mathrm{P}_{\text {switching }}+\mathrm{P}_{\text {on,conduction }}=53.125$ Watt
b) simulate the circuit in 2) using ORCAD/PSPICE and plot the magnified turn-on and turn off transitions of the voltage, current and power loss in the IGBT.

- Conclusion:

The results obtained from the simulations and calculations show that the power loss in case of a purely resistive load is less than the power loss in case of an inductive load.

By the end of this assignment, a full understanding of chopper circuits was achieved.

